Special Practice Problems sudhir jainam

(Mains & Advanced)

Topic: Matrices

** Cayley–Hamilton Introduced Matrix theory (named after the mathematicians Arthur Cayley and William Rowan Hamilton)

***If you shuffle a pack of cards properly, chances are that exact order has never been seen before in the whole history of the universe.

Objective Questions Type I [Only one correct answer].

In each of the questions below, four choices are given of which only one is correct. You have to select the correct answer which is the most appropriate.

1. If
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^{T}$, then $P^{T}(Q^{2005}) P$ is equal to

(a)
$$\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} \frac{\sqrt{3}}{2} & 2005 \\ 1 & 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 2005 \\ \frac{\sqrt{3}}{2} & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & \frac{\sqrt{3}}{2} \\ 0 & 2005 \end{bmatrix}$$

2. What is wrong in the following computation?

$$\begin{bmatrix} 1 & 0.01 \\ 1 & 1 \end{bmatrix}^{n} = \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + 10^{-2} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}^{n}$$
$$= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{n} + n \times 10^{-2} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{n-1} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Since,
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^k = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, for $k \ge 2$.

(a)
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^k = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, for $k \ge 2$ is not true

- (b) Computation of second term on RHS is not valid
- (c) First term should be calculated completely
- (d) None of the above
- 3. If $A^5 = 0$ such that $A^n \neq I$ for $1 \le n \le 4$, then $(I A)^{-1}$ is equal to
 - (a) A^4
 - (b) A^{3}
 - (c) I + A
 - (d) none of these

4. If
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
, then $\lim_{n \to \infty} \frac{A^n}{n}$ is (where $\theta \in R$)

- (b) an identity matrix (d) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

- 5. If $A = \text{diag } (d_1, d_2, d_3, \dots, d_n)$, then A^n is equal to (a) diag $(d_1^{n-1}, d_2^{n-1}, d_3^{n-1}, \dots, d_n^{n-1})$

 - (b) diag $(d_1^n, d_2^n, d_3^n, \dots, d_n^n)$
 - (c) diag $(d_1, d_2, d_3, \ldots, d_n)$
 - (d) diag $(d_1, d_2^2, d_3^3, \ldots, d_n^n)$

6. The rank of the matrix
$$\begin{pmatrix} -1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1 \end{pmatrix}$$
 is (where $a = -6$)

(a) 1

- 7. If A is a square matrix of order 2×2 such that $A^2 = 0$, then

(a)
$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$$
, where α , β , γ are numbers such that $\alpha^2 + \beta \gamma = 0$

(b)
$$A = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$$
 with $\alpha = \pm \beta$

(c)
$$A = \begin{pmatrix} \alpha & -\alpha \\ -\beta & \beta \end{pmatrix}$$
 with $\alpha^2 + \beta^2 = 1$

(d) none of the above

8. If
$$2x - y = \begin{bmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{bmatrix}$$
 and $2y + x = \begin{bmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{bmatrix}$, then

(a)
$$x + y = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 3 & -2 \end{bmatrix}$$
 (b) $x = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$ (c) $x - y = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 2 \end{bmatrix}$ (d) $y = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 1 & -2 \end{bmatrix}$

(b)
$$x = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

(c)
$$x - y = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 2 \end{bmatrix}$$

(d)
$$y = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 1 & -2 \end{bmatrix}$$

9. If
$$A = \begin{pmatrix} \frac{-1+i\sqrt{3}}{2i} & \frac{-1-i\sqrt{3}}{2i} \\ \frac{1+i\sqrt{3}}{2i} & \frac{1-i\sqrt{3}}{2i} \end{pmatrix}$$
, $i = \sqrt{-1}$ and $f(x) = x^2 + 2$,

then f(A) equals

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(b)
$$\left(\frac{3-i\sqrt{3}}{2}\right)\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$

(c)
$$\left(\frac{5-i\sqrt{3}}{2}\right)\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$
 (d) $(2+i\sqrt{3})\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$

(d)
$$(2+i\sqrt{3})\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

10. If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$$
 and $A^2 = 8A + kI_2$, then k is equal to

(a) -1(c) -7

- (d) 7
- $\cos \theta \sin \theta$

zero matrix, then θ and ϕ differ by

- (a) even multiple of $\frac{\pi}{2}$
- (b) odd multiple of $\frac{\pi}{2}$
- (c) even multiple of π
- (d) odd multiple of π
- **12.** Let A and B be two matrices, then
 - (a) AB = BA
- (b) $AB \neq BA$
- (c) AB < BA
- (d) AB > BA
- 13. Let A and B be two matrices such that A = O, AB = O, then equation always implies that
 - (a) B = 0

- (b) $B \neq 0$
- (c) B = -A
- (d) B = A'
- 14. In matrices

(a)
$$(A + B)^2 = A^2 + 2AB + B^2$$

(b)
$$(A + B)^2 = A^2 + B^2$$

(c)
$$(A + B)^2 \neq A^2 + 2AB + B^2$$

(d)
$$(A + B)^2 = A^2 + 2BA + B^2$$

- 15. The characteristic of an orthogonal matrix A is
 - (a) $A^{-1} \cdot A = I$ (b) $A \cdot A^{-1} = I$
- - (c) $A' \cdot A^{-1} = I$
- (d) $A \cdot A' = I$
- 16. The rank of 0 3 0 is equal to
 - (a) 4

(b) 3

(c) 5

- (c) x = 1, y = -1
- (d) x = -1, y = 1
- $\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, which of the following result is true?
 - (a) $A^2 = I$
- (b) $A^2 = -I$
- (c) $A^2 = 2I$
- (d) None of these

- 19. With $1, \omega, \omega^2$ as cube roots of unity, inverse of which of the following matrices exists?

- (d) None of these
- **20.** If A is an orthogonal matrix, then A^{-1} equals
 - (a) A

(c) A^2

- (d) none of these
- **21.** If $A = \begin{bmatrix} 5 & -3 & 8 \end{bmatrix}$, then trace of A is
 - (a) 17

(b) 25

(c) 8

- (d) 15
- **22.** If A is a square matrix of order $n \times n$, then adj(adj A) is equal to
 - (a) $|A|^n A$

- (b) $|A|^{n-1}A$
- (c) $|A|^{n-2}A$
- (d) $|A|^{n-3}A$
- 23. If A is a square matrix, then adj A^T $(adj A)^T$ is equal to
 - (a) 2|A|

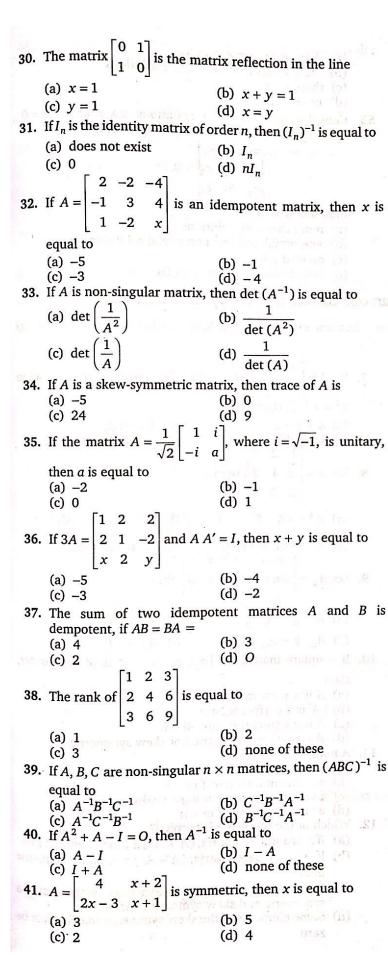
- (b) 2|A|I
- (c) null matrix
- (d) unit matrix
- **24.** If $A = [a_{ij}]_{m \times n}$ is a matrix of rank r, then
 - (a) $r = \min(m, n)$
- (b) $r > \min(m, n)$
- (c) $r \leq \min(m, n)$
- (d) none of these
- **25.** If A is an orthogonal matrix, then
 - (a) |A| = 0
- (b) $|A| = \pm 1$ (d) none of these
- (c) $|A| = \pm 2$
- **26.** The matrix
 - (a) idempotent
- (b) nilpotent
- (c) involutory
- (d) orthogonal
- 27. Matrix theory was introduced by
 - (a) Cauchy-Riemann
- (b) Caley-Hamilton
 - (c) Newton
- (d) Cauchy-Schwar
- a 0 0 **28.** If $A = \begin{bmatrix} 0 & b & 0 \end{bmatrix}$, then A^{-1} is equal to 0 0 c

- 1 2, then adj A is equal to
 - (a) A

(b) A^T

(c) 3A

(d) $3A^T$



42. Let a, b, c be positive real numbers. The following system equations $\frac{x^2}{a^2} + \frac{y^2}{h^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{h^2} + \frac{z^2}{c^2} = 1,$ (b) unique solution (a) no solution (c) infinitely many solutions (d) finitely many solutions 8 - 6 2-4 is singular, then λ is equal to (a) 3 (d) 5 (c) 2 44. If A is a 3×3 matrix and $det(3A) = k \{ det(A) \}$, then k is (b) 6 (a) 9 (d) 27 (c) 1 $\cos x \sin x = 0$ $-\sin x \cos x = 0$ = f(x), then A^{-1} is equal to (a) f(-x)(b) f(x)(d) -f(-x)(c) -f(x)46. If A and B are square matrices of order 3 such that |A| = -1, |B| = 3, then |3AB| equals (a) -9(b) -81(c) -27(d) 81 47. The equations 2x + y = 5, x + 3y = 5, x - 2y = 0 have (a) no solution (b) one solution (c) two solutions (d) infinitely many solutions 48. If A is 3×4 matrix B is a matrix such A' B and BA' are both defined, then B is of the type (a) 3×4 (b) 3×3 (d) 4×3 49. If $A = [a \ b]$, $B = [-b \ -a]$ and $C = \begin{bmatrix} a \\ \end{bmatrix}$, then the correct statement is (a) A = -B(b) A + B = A - B(c) AC = BC(d) CA = CBthen A^{-1} is equal to , then A^2 is equal to (a) A

(c) null matrix

52. If
$$X = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, then the value of X^n is

(a)
$$\begin{bmatrix} 3n & -4n \\ n & -n \end{bmatrix}$$
$$\begin{bmatrix} 3^n & (-4)^n \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2+n & 5-n \\ n & -n \end{bmatrix}$$

(c)
$$\begin{bmatrix} 3^n & (-4)^n \\ 1^n & (-1)^n \end{bmatrix}$$

(d) none of these

- **53.** Matrix A such that $A^2 = 2A I$, where I is the identity matrix. Then for $n \ge 2$, A^n is equal to
 - (a) nA (n-1)I
- (b) nA-I
- (c) $2^{n-1}A (n-1)I$ (d) $2^{n-1}A I$
- **54.** For the equations : x + 2y + 3z = 1, 2x + y + 3z = 2, 5x + 5y + 9z = 4

- (a) there is only one solution
- (b) there exists infinitely many solutions
- (c) there is no solution
- (d) none of the above
- 55. Consider the system of equations $a_1x + b_1y + c_1z = 0$ $a_2x + b_2y + c_2z = 0$, $a_3x + b_3y + c_3z = 0$. If

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0,$$

then the system has

- (a) more than two solutions
- (b) one trivial and one non-trivial solutions
- (c) no solution
- (d) only trivial solution (0, 0, 0)

Objective Questions Type II [One or more than one correct answer(s)]

In each of the questions below four choices of which one or more than one are correct. You have to select the correct answer(s) accordingly.

1. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, then

- (a) $A^3 = 9A$
- (b) $A^3 = 27A$
- (c) $A + A = A^2$
- (d) A^{-1} does not exist
- 2. For all values of λ , the rank of the matrix

$$A = \begin{bmatrix} 1 & 4 & 5 \\ \lambda & 8 & 8\lambda - 6 \\ 1 + \lambda^2 & 8\lambda + 4 & 2\lambda + 21 \end{bmatrix}$$

- (a) for $\lambda = 2$, $\rho(A) = 1$
- (b) for $\lambda = -1$, $\rho(A) = 2$
- (c) for $\lambda \neq 2, -1, \rho(A) = 3$ (d) none of these

3.
$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & -1 & 4 \\ 3 & 4 & 1 \end{bmatrix}$$
 is a

- (a) rectangular matrix (b) singular matrix
- (c) square matrix
- (d) non singular matrix
- 4. If A and B are square matrices of the same order such that $A^{2} = A$, $B^{2} = B$, AB = BA = O, then
 - (a) $(A + B)^2 = A + B$
- (b) $AB^2 = 0$
- (c) $(A B)^2 = A B$
- (d) none of these

5. Let
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
, then

(a)
$$A^{-n} = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix} \forall n \in \mathbb{N}$$
 (b) $\lim_{n \to \infty} \frac{A^{-n}}{n} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$

- (c) $\lim_{n \to \infty} \frac{A^{-n}}{n^2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (d) none of these
- 6. The values of α for which the system of equations $x + 2y + 4z = \alpha$, $x + 4y + 10z = \alpha^2$ x+y+z=1,consistent, are given by
 - (a) 1, 2

- (c) 1, -2

- 7. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (where $bc \neq 0$) satisfies the equation $x^2 + k = 0$, then
 - (a) a + d = 0
- (a) u = |A|(c) k = |A|[1 2 2]
- (d) none of these

8. Let
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, then

- (a) $A^2 4A 5I_3 = 0$ (b) $A^{-1} = \frac{1}{5}(A 4I_3)$
- (c) A³ is not invertible
- (d) A^2 is invertible

9. Let
$$A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then

- (a) $A_{\alpha+\beta} = A_{\alpha}A_{\beta}$
- (c) $A_{\alpha}^{-1} = -A_{\alpha}$
- 10. If a square matrix $A = [a_{ij}]$, $a_{ij} = i^2 j^2$ is of even order, (a) A is a skew matrix and though 2 to done aft. 88.

 - (b) | A| is a perfect square
 - (c) A is a symmetric and |A| = 0
 - (d) A is neither symmetric nor skew-symmetric
- 11. A matrix $A = [a_{ij}]_{m \times n}$ is
 - (a) a horizontal matrix if m > n
 - (b) a horizontal matrix if m < n
 - (c) a vertical matrix if m > n
 - (d) a vertical matrix if m < n
- 12. Which of the following is correct?
 - (a) If A is a square matrix, (A + A') is a symmetric matrix
 - (b) If A is a square matrix, (A A') is a skew symmetric
 - (c) Every square matrix can be expressed as the sum of a symmetric and skew symmetric matrix
 - (d) Some elements of the skew symmetric matrix must be

- **13.** If A and B are invertible square matrices of the same order, then which of the following is correct?
 - (a) adj(AB) = (adjB)(adjA)
 - (b) (adjA)' = (adjA')
 - (c) $|adjA| = |A|^{n-1}$, where n is the order of matrix A
 - (d) $adj(adjB) = |B|^{n-2}B$, where n is the order of matrix B
- 14. If D_1 and D_2 are two 3×3 diagonal matrices, then
 - (a) D_1D_2 is a diagonal matrix
 - (b) $D_1^2 + D_2^2$ is a diagonal matrix
 - (c) $D_1D_2 = D_2D_1$
 - (d) D_1^n is a diagonal matrix $\forall n \in \mathbb{N}$
- 15. Let A, B and C be 2×2 matrices with entries from the set of

real numbers. Define o as follows

$$AoB = \frac{1}{2}(AB + BA)$$
, then

- (a) AoB = BoA
- (b) AoI = A, I is an identity matrix of order 2
- (c) $AoA = A^2$
- (d) Ao(B+C) = AoB + AoC

16. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, then

- (a) adj(adjA) = A
- (b) |adj(adjA)| = 1
- (c) |adjA| = 1
- (d) none of these

Linked-Comprehension Type

In these questions, a passage (paragraph) has been given followed by questions based on each of the passages. You have to answer the questions based on the passage given.

PASSAGE 1

Let A and B are two matrices of same order 3×3 , where $A = \begin{pmatrix} 1 & 3 & \lambda + 2 \\ 2 & 4 & 8 \\ 3 & 5 & 10 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 2 & 4 \\ 3 & 2 & 5 \\ 2 & 1 & 4 \end{pmatrix}$

On the basis of above information, answer the following questions:

- 1. If A is singular matrix, then tr(A + B) is equal to
 - (a) 6
- (b) 12
- (c) 24
- 2. If matrix 2A + 3B is singular, then the value of 2λ is
 - (a) 11
- (b) 13
- (c) 15
- (d) 17
- 3. If $\lambda = 3$, then $\frac{1}{7}(tr(AB) + tr(BA))$ is equal to

- (d) 63
- 4. If $A = \begin{pmatrix} \lambda + 2 & 3 & 1 \\ 8 & 4 & 2 \\ 10 & 5 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 4 & 2 & 3 \\ 5 & 2 & 3 \\ 4 & 5 & 2 \end{pmatrix}$

- tr(A-2B)=0, then the value of λ is

(b) 5

(c) 7

- (d) 9
- 5. The correct statement is
 - (a) $(A + B) (A B) = A^2 + B^2 2AB$
 - (b) $(A + B)^2 = A^2 + B^2 + AB + BA$
 - (c) $(A + B)^2 = A^2 + B^2 + 2AB$
 - (d) none of the above

A and B are two matrices of same order 3×3 , where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8 \end{pmatrix} \text{ and } B = \begin{pmatrix} 3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9 \end{pmatrix}$$

On the basis of above information, answer the following questions:

- 1. The value of adj(adj A) is equal to
- (a) 2A
- (b) 4A

- (c) 8A 2. The value of |adj(adj A)| is equal to
 - (a) 9
- (b) 16
- (c) 25
- (d) 81

(d) 16A

- 3. The value of |adj B| is equal to
 - (a) 24
- (b) 24^2
- (c) 24^3
- (d) 8^2
- 4. The value of | adj (AB) | is equal to (c) 24^3
 - (a) 24
- (b) 24^2
- (d) 65
- 5. The value of | (adj (adj (adj (adj A)))) | is equal to (a) 2^4 (b) 2⁹

(c) 2^{13}

(d) 2¹⁹

Matrix-Match Type _

Given below are Matching Type Questions, with two columns (each having some items) each . Each item of Column I has to be matched with the items of Column II, by encircling the correct match(es).

NOTE An item of Column I can be matched with more than one items of Column II. All the items of Column II have to be matched.

1. Observe the following columns:

Column I		Column II
(A) If a, b and c are all different from zero such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$, then the matrix	t (P)	symmetric
$A = \begin{pmatrix} 1+a & 1 & 1\\ 1 & 1+b & 1\\ 1 & 1 & 1+c \end{pmatrix} $ is	(Q)	singular
$\begin{pmatrix} 1 & 1 & 1+c \end{pmatrix}$		and A. Villager
(B) If α , β , γ are three real numbers, then the matrix	(R)	non singular
$A = \begin{pmatrix} 1 & \cos(\alpha - \beta) & \cos(\alpha - \gamma) \\ \cos(\beta - \alpha) & 1 & \cos(\beta - \gamma) \\ \cos(\gamma - \alpha) & \cos(\gamma - \beta) & 1 \end{pmatrix} \text{is}$	(S)	invertible
(C) If A, B and C are the angles of a triangle, then the matrix $A = \begin{pmatrix} \sin 2A & \sin C & \sin B \\ \sin C & \sin 2B & \sin A \\ \sin B & \sin A & \sin 2C \end{pmatrix}$ is	(T)	non invertible

(A) P Q B S T

2. Obser

ess x	e following columns : Column I	Column II					
	If A, B and C be 2×2 matrices with entries from the set of real	(P)	A * B = B * A				
A)	numbers. Define * as follows :	(Q)	A*(B+C) = A*B+A*C				
4,77	$A * B = \frac{1}{2} (AB + BA)$, then If A, B and C be 2 × 2 matrices with entries from the set of real	(R)	$A * A = A^2$				
3)	numbers.	(S)	A * I = A				
	Define * as follows: $A * B = \frac{1}{2} (AB' + A'B)$, then		70				
C)	If A, B and C be 2×2 matrices with entries from the set of real numbers. Define * as follows:	(T)	A * I = O				
200	$A * B = \frac{1}{2}(AB - BA)$, then						

• Answers

Objective Questions Type I [Only one correct answer]

			-	-	-			_											
1.	(a)	2.	(b)	3.	(d)	4.	(a)	5.	(b)	6.	(a)	7.	(a)	8.	(b)	9.	(d)	10.	(c)
11.	(b)	12.	(b)	13.	(b)	14.	(c)	15.	(d)	16.	(b)	17.	(c)	18.	(b)	19.	(d)	20.	(b)
21.	(d)	22.	(c)	23.	(c)	24.	(c)	25.	(b)	26.	(b)	27.	(b)	28.	(c)	29.	(d)	30.	(d)
31.	(b)	32.	(c)	33.	(d)	34.	(b)	35.	(b)	36.	(c)	37.	(d)	38.	(a)	39.	(b)	40.	(c)
41.	(b)	42.	(b)	43.	(a)	44.	(d)	45.	(a)	46.	(b)	47.	(b)	48.	(a)	49.	(c)	50.	(b)
	(1)	=0	(1)				()		(-)										

Objective Questions Type II [One or more than one correct answer(s)]

,	.,,,	and the same for the same of the same			
1. (a, d)	2. (a, b, c)	3. (c, d)	4. (a, b)		5. (a, b, c)
6. (a, c)	7. (a, c)	8. (a, b, d)	9. (a, b)	and the s	10. (a, b)
11. (b, c)	12. (a, b, c, d)	13. (a, b, c, d)	14. (a, b, c, d)		15. (a, b, c, d)
16. (a. b. c)					

Linked-Comprehension Type

Passage 1 1. (c) 2. (d) 3. (a) 4. (c) 5. (b) Passage 2 1. (a) 2. (b) 3. (b) 4. (b) 5. (c)

Numerical Grid-Based Problems

